If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=10x-14
We move all terms to the left:
x^2-(10x-14)=0
We get rid of parentheses
x^2-10x+14=0
a = 1; b = -10; c = +14;
Δ = b2-4ac
Δ = -102-4·1·14
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{11}}{2*1}=\frac{10-2\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{11}}{2*1}=\frac{10+2\sqrt{11}}{2} $
| 20x+x-2=2 | | (x2−4x+9)=(x2−3x+7) | | 8=4x+(-2) | | 6(3^x-5)+4=28 | | | | 5x×1=-5x+10 | | 12c+2=38 | | 27=3s-4(23-s) | | B=23-s | | -3x2+5x+8=0 | | 18=j(-6) | | x–10=11–2x. | | 4=k/10 | | -4=-2/3u | | C=20+30t | | 2-4a+7=8a+3 | | x-(-5)=`19 | | 7x(8)+5=180 | | 180=10x+48 | | 2s2–7s+4=0 | | -2.5p=-12.5 | | -15(x-11)=176 | | 5z-2z(1+3)=15 | | 8-10x=10+(x-1) | | (x-3)5=20 | | q-24=24 | | x^2−34=16x | | 9^x+3^x=72 | | c+61=90 | | (3x-20)+(5x-40=180 | | 2u+6=13u+62 | | t-34=9 |